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We study the failure properties of fiber bundles with a finite lower cutoff of the strength disorder varying the
range of interaction between the limiting cases of completely global and completely local load sharing. Com-
puter simulations revealed that at any range of load redistribution there exists a critical cutoff strength where
the macroscopic response of the bundle becomes perfectly brittle, i.e., linearly elastic behavior is obtained up
to global failure, which occurs catastrophically after the breaking of a small number of fibers. As an extension
of recent mean field studies �Phys. Rev. Lett. 95, 125501 �2005��, we demonstrate that approaching the critical
cutoff, the size distribution of bursts of breaking fibers shows a crossover to a universal power law form with
an exponent 3 /2 independent of the range of interaction.
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In engineering constructions solids are subjected to vari-
ous types of external loads and typically fail when the load
exceeds a critical value. Monitoring stressed systems and
forecasting an imminent failure event is of enormous impor-
tance due to the possible material and human costs. In spite
of the large amount of experimental and theoretical effort
that has been undertaken over the past decades, there is no
comprehensive understanding of failure phenomena, which
is also reflected by the absence of reliable prediction meth-
ods. Materials of low disorder typically fail in a “one-crack”
way, where the main problem is to prevent crack initiation
and propagation. However, the failure of highly disordered
materials proceeds in bursts of local breaking events that can
be recorded as acoustic signals. Experiments on a large va-
riety of materials have revealed that in crackle noise spectra
accompanying quasistatic fracture of disordered materials,
the amplitude and duration of signals and the waiting time
between them are characterized by power law distributions
over a broad range �1–3�. Quantitative changes of the burst
activity when approaching the critical load could be precur-
sors of catastrophic failure and may serve as the basis for
forecasting techniques.

In the framework of discrete models of the fracture of
disordered materials, bursts can be identified as trails of cor-
related breakings of the microscopic constituents of the
model. Fiber bundle models consist of a parallel bundle of
fibers with identical linearly elastic behavior and randomly
distributed breaking thresholds �4–6�. Under an increasing
external load, each fiber breaking is followed by a load re-
distribution over the remaining intact fibers, which may trig-
ger avalanches of correlated breaking events analogous to
crackling noise in experiments. Assuming global load shar-
ing �GLS�, it has been shown that the distribution of ava-
lanche sizes has a universal power law behavior with an
exponent 5 /2 �7�. In the other extreme of local load sharing
�LLS�, redistributing the load solely over the closest neigh-
borhood of fibers, the avalanche distribution appears also to
be a power law but with a higher exponent �9/2 �7,8�. For

global load sharing it has recently been pointed out that the
distribution of burst sizes significantly changes if the weak
fibers are removed from the bundle: if the strength distribu-
tion of fibers has a finite lower cutoff, or analogously, if the
recording of avalanches starts after the breaking of the weak
elements, the burst size distribution is found to show a cross-
over to another power law with a significantly lower expo-
nent 3 /2 �9,10�. The effective range of interaction in real
materials may have large variations �11�, therefore, in order
to use the crossover effect of burst sizes in forecasting of
imminent failure, its robustness with respect to the range of
interaction must be explored.

In the present paper we extend recent mean field studies
of the effect of the lower cutoff of fiber strength on the
failure process of fiber bundle models �9,10� by continuously
varying the range of load sharing between the limiting cases
of completely global load sharing and the very localized one
�11�. We show that at any range of interaction there exists a
critical value of the cutoff strength above which the global
response of the bundle becomes perfectly brittle, as in the
GLS case �6�. We demonstrate that the crossover of the ava-
lanche size distribution to a power law of an exponent 3 /2,
when approaching the critical cutoff strength, is independent
of the range of interaction. Our results support the usage of
the crossover phenomenon of burst sizes in forecasting
techniques of imminent failure.

We consider a parallel bundle of fibers organized on a
square lattice of size L�L. The fibers are assumed to have
linearly elastic behavior with identical Young modulus E up
to a randomly distributed breaking threshold. For simplicity,
the failure thresholds �th are assumed to have a uniform
distribution between a lower cutoff strength �L and one with
the probability density function p��th� �12�,

p��th� = � 1

1 − �L
for �L � �th � 1,

0 otherwise.
� �1�

Under an increasing external load the fibers break when the
load on them exceeds the local threshold value �th

i , where
i=1, . . . ,N and N=L2 denotes the number of fibers. Due to*Electronic address: raischel@ica1.uni-stuttgart.de
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the linearly elastic behavior, the failure thresholds �th
i can

also be expressed in terms of deformation �th
i =�th

i /E with the
cutoff strength �L=�L /E. After a failure event, the remaining
intact fibers must take over the load of the failed one. In
order to give a realistic description of the load redistribution
in FBMs, we recently introduced a load transfer function of
the form

�add =
1

Z
rij

−�, �2�

where �add denotes the additional load fiber i received after
the breaking of fiber j �11�. The load increment �add de-
creases as a power law of the distance rij from the failed
fiber, where the exponent � is considered to be a free param-
eter of the model. The exponent � can take any values be-
tween 0 and � controlling the effective range of load redis-
tribution between the limiting cases of completely global
�=0 and completely localized load redistribution �→� �11�.

Under perfectly global load sharing �=0 the macroscopic
constitutive equation of the system can be cast in a simple
analytic form

���� = �E� for E� � �L,

E�
1 − E�

1 − E�L
for �L � E� � 1, � �3�

where in the following, the value of the Young modulus of
fibers will be set to unity E=1. The constitutive behavior Eq.
�3� of the bundle is perfectly linear up to the deformation �L
since no fibers break in this regime �see also Fig. 1�b��. Due
to the breaking of fibers above �L, the constitutive curve ����
becomes nonlinear and develops a maximum whose value
�c

GLS and position �c
GLS define the failure stress and strain of

the bundle, respectively. It follows from Eq. �3� that the criti-
cal strain is constant �c

GLS=1/2 and does not depend on the
cutoff strength �L, while �c

GLS increases due to the missing
weak fibers �12�

�c
GLS =

1

4�1 − �L�
. �4�

Increasing the external load quasistatically, the breaking fi-
bers trigger avalanches of failure events which either stop
after a finite fraction of fibers failed, or become unstable and
destroy the entire system. As a consequence, the cutoff
strength �L can take meaningful values in the interval
0��L��c

GLS, since for �L��c
GLS the breaking of the first

weakest fiber results in an immediate catastrophic failure of
the bundle.

We explore the effect of the finite cutoff strength �L on the
failure process of FBMs with short ranged load sharing by
means of computer simulations, redistributing the load of
broken fibers according to the load transfer function Eq. �2�.
Stress controlled simulations were carried out on a square
lattice of size L=257 with periodic boundary conditions
varying the cutoff strength �L of the disorder distribution Eq.
�1� in the interval �0, 0.5� at several different values of the
effective range of interaction � between 0 and 11. To char-
acterize the failure process of the bundle at the macro and
micro level, we determined the critical stress �c and strain
�c, the distribution D of avalanche sizes 	, the average ava-
lanche size �		, and the average value of the largest ava-
lanche �	max	. For clarity, we first characterize the behavior
of the system in the specific case of zero cutoff �L=0 by
studying the critical stress �c and strain �c of the bundle as a
function of �, see Fig. 1�a�. Based on the numerical results,
three regimes of the failure of FBM can be distinguished in
Fig. 1�a� depending on the range of load sharing: for ��2
the range of interaction is infinite in the two-dimensional
embedding space, hence both �c and �c take their GLS val-
ues �c=0.25 and �c=0.5 independent of � �see Eq. �4� at
�L=0�. Increasing the value of ��2 the effective range of
interaction gradually decreases, which lowers the macro-
scopic strength �c and �c of the bundle. In the limiting case
of �→� the model recovers the very localized load sharing,
where �c and �c take again constant values. According to the
numerical results, the perfectly localized limit is practically
reached for ��6, so that in the interval 2���6 a transition
occurs between the completely global and completely local
behavior �11�. Figure 1�b� demonstrates that for ��2 �i.e.,
GLS� the macroscopic failure of the bundle is preceded by a
strong nonlinearity of the constitutive curve ����. At any
wider range of load sharing, �
2, the ���� curves follow
the GLS solution Eq. �3�, but with lower strength values,
which implies a more brittle macroscopic response for short
ranged interactions.

Varying the cutoff strength �L at different values of �, it
can be seen in Figs. 2�a� and 2�b� that in the long range
regime ��2 both �c and �c agree well with the analytic
predictions Eq. �4�, i.e., �c=1/2 is constant while �c in-
creases with increasing cutoff �L. When the load sharing be-
come short ranged �
2, the increasing macroscopic brittle-
ness has the consequence that the curves of �c��L� and �c��L�
shift downwards as � increases and tend to a limit curve

FIG. 1. �a� Failure stress �c and strain �c of
the fiber bundle model at zero cutoff �L=0 com-
pared to the critical cutoff �L

c as a function of �.
�b� Constitutive curves for GLS �=0 �lines� com-
pared to the case of �=5 �triangles� at different
values of �L.
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when the interaction becomes completely localized for
��6. It is interesting to note that for short range interaction
of fibers �
2, not only the failure stress �c but also the
failure strain �c is an increasing function of �L. It is impor-
tant to emphasize that at each � there exists a critical value
of the cutoff strength �L

c ��c
GLS where the failure stress �c

and strain �c of the system becomes equal to the cutoff
strength, i.e., at �L

c holds �c��L
c�=�c��L

c�=�L
c . At this point the

macroscopic response of the bundle becomes perfectly
brittle, i.e., under gradual loading of the system the macro-
scopic constitutive behavior is linear up to �c, where the
breaking of the weakest fiber gives rise to the collapse of the
entire system �Fig. 1�b��. This transition is better illustrated
by Fig. 2�c� where the difference �= 
�c��L�−�c��L�
 is plot-
ted versus �L. It can be observed that � monotonically de-
creases and becomes practically zero at �L

c of the given �.
Since the absence of weak fibers gives rise to a higher mac-
roscopic strength, the value of �L

c is larger than the strength
of the bundle �c and �c at zero cutoff �see Fig. 1�a��.

On the microlevel, the failure process is characterized by
the bursts of fiber breakings, which also show an interesting
behavior when the range of interaction � and the lower cut-
off �L are varied. In the GLS regime ��2, our computer
simulations perfectly recover the analytical and numerical
results of Refs. �9,10� �see Fig. 3�a��: for �L=0 the size
distribution of bursts D�	� follows a power law

D�	� � 	−
, �5�

with an exponent 
=5/2. Increasing the value of the cutoff
�L, for small avalanches, a crossover occurs to a power law
of a lower exponent 
=3/2, while for large avalanches the
original power law with 
=5/2 is retained. The crossover to
a lower value of the exponent indicates that, due to the miss-
ing weak fibers, the fraction of small avalanches decreases
compared to the larger ones. This argument is further sup-

ported by Fig. 2�d� and Fig. 4 which demonstrate that for
��2 both the average size of the largest avalanche �	max	
and the average avalanche size �		 are monotonically in-
creasing functions of the cutoff �L. However, when the load
sharing gets short ranged �
2, both �	max	 and �		 have a
maximum at the critical cutoff strength. The qualitative be-
havior of the crossover avalanche size 	c is equal to that of
�		: for �
2, 	c has a maximum at �L

c , and the height of the
maximum decreases with increasing �. Note that the nonva-
nishing avalanche size above �L

c arises due to the strength
fluctuations of the finite bundle so that above �L

c the bundle

FIG. 2. �Color online� Characteristic quanti-
ties of the failure process of FBM varying the
effective range of load sharing � and the cutoff
value of failure strength �L: �a� critical deforma-
tion �c, �b� critical stress �c, �c� 
�c−�c
, �d� the
average size of the largest avalanche �	max	 as a
function of �L for various values of �.

FIG. 3. �Color online� Distribution of burst sizes D�	� varying
�L at different values of �: �a� 2.0, �b� 2.5, �c� 3.0, �d� 6.0. Cross-
over behavior of D�	� can be observed as �L approaches the critical
cutoff value �L

c���.
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may survive a small number of avalanches instead of col-
lapsing after the breaking of the weakest fiber. It is interest-
ing to note that contrary to GLS, in the transition regime
2���6, the avalanche size distribution does not show a
power law behavior for small cutoffs �L�0, however, when
�L approaches the critical value �L

c���, the distribution of
burst sizes D�	� tends again to a power law of an exponent

=3/2 �Figs. 3�a� and 3�b��. For very localized interactions
�
6 an apparent power law of D�	� is restored for �L�0
with a relatively high exponent 
�9/2, in agreement with
Ref. �8� �Fig. 3�d��. The main outcome of computer simula-
tions is that the crossover behavior of D�	� to the universal
power law D�	��	−3/2 prevails at any value of the range of
interaction � for the limiting case of �L→�L

c���, indepen-
dently of the original form of D�	� at zero cutoff �L=0 �see
Fig. 3�. In spite of the relatively large system size L, for short
range interaction of fibers and �L→�L

c��� the statistics of
avalanche sizes is rather poor for large avalanches, which

hinders us from making a definite conclusion on the shape of
D�	� in this 	 regime.

An interesting experimental realization of the crossover
for crackling noise was very recently found in the magnitude
distribution of earthquakes in Japan �14�. Analyzing the local
magnitude distribution of earthquakes preceding main
shocks, a significant decrease of the Gutenberg-Richter ex-
ponent was obtained when the lower bound of the time win-
dow of the analysis is shifted towards the catastrophic event
�14�. Fracture of ferromagnetic materials is accompanied by
changes of the magnetic flux, which can be recorded as mag-
netic noise and provides information on the dynamics of
crack propagation �15�. The amplitude, area, and energy of
magnetic emission signals have recently been found to have
power law distributions with exponents depending on the
type of fracture, i.e., ductile failure where stable crack propa-
gation occurs in a large number of elementary steps is char-
acterized by significantly higher exponents than brittle fail-
ure, where the crack propagates in an unstable catastrophic
manner breaking the specimen in a few large jumps �15�.
Our numerical results suggest that the reduction of nonlin-
earity of the macroscopic response of materials preceding
global failure when going from ductile and quasibrittle to
brittle fracture is responsible for the lowering of the crack-
ling noise exponents on the microlevel.

In summary, we carried out computer simulations of the
failure process of a bundle of fibers with a finite cutoff of the
fibers’ strength, continuously varying the range of interaction
between the limiting cases of global and local load sharing.
We showed that increasing the cutoff strength �L the macro-
scopic response of the fiber bundle becomes perfectly brittle
when �L approaches a critical value �L

c���, depending on the
range of interaction �. Our numerical results demonstrate the
robustness of the crossover of the avalanche size distribution
D�	� to a universal power law of exponent 3 /2, irrespective
of the range of interaction between the material elements.
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FIG. 4. �Color online� The average burst size �		 as a function
of �L for different values of �. In the short range regime �
2, the
average avalanche size �		 has a clear maximum that coincides
with the critical cutoff strength �L

c . Inset, crossover avalanche size
	c and GLS analytical solution �13�.
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